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SUMMARY 

A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For 
the linear basis, the resultant approximation is at least second-order-accurate in time and space for 
synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion 
conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second- 
order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product 
factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. 
Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow 
specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and 
two-dimensional Euler and Navier-Stokes benchmark test problems. Of critical importance, essentially 
non-oscillatory solutions are uniformly attained for a range of supercritical flow situations with shocks. 

KEY WORDS Compressible Navier-Stokes equations Taylor weak statement Curvilinear co-ordinate dissipation 
Lyapunov stability theory Well-posed boundary conditions Finite element semi-discretization 
Implicit Rosenbrock-Runge-Kutta scheme Tensor matrix product factorization 

1. INTRODUCTION 

This paper documents the derivation and performance verification of an implicit and stiffly stable 
Galerkin finite element algorithm for the compressible Navier-Stokes equations that is semi- 
discretely stable and second-order-accurate on arbitrary meshes. The theoretical developments 
then lead to a terminal fully discrete algebraic system that is efficiently solved non-iteratively for 
large Courant numbers. 

The need to meet these fundamental requirements, namely stability, accuracy and efficiency for 
arbitrary meshes in a single practical scheme, has motivated the development of a variety of 
significant algorithms in the last two decades. A notable contribution was published by Beam and 
Warming,' who proposed a central difference implicit factored scheme for the Euler equations, 
wherein the unknown state variable constitutes the solution of an efficient sequence of block- 
tridiagonal linear systems. This procedure forms the basis of the ARC-2D, ARC-3D code family 
that has allowed investigation of a wide range of transonic and supersonic flows. However, as 
confirmed by Pulliam,* the basic scheme must be augmented by a blend of second- and fourth- 
order dissipative difference expressions to maintain stability in the presence of shocks. This leads 
to a block-pentadiagonal matrix system if the full Jacobian matrix of the necessary artificial 
dissipation is included in the implicit formulation. The original matrix structure can be main- 
tained by using only explicit fourth-order damping, which limits the magnitude of stable time 
steps. The associated Courant number may not be much larger than unity for accurate unsteady 
simulations, since the time integrator is the intrinsically non-dissipative Crank-Nicolson rule. 
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In parallel with space-centred schemes, upwind methods have been developed to dispense with 
the explicit addition of numerical dissipation. Notable procedures evolving flux vector and flux 
difference splittings include those of Steger and Warming,3 van Leer4 and Roe,’ wherein the 
upwind differencing is performed in directions opposite to the characteristic directions and 
thereby inherently introduces an amount of artificial dissipation. These algorithms have been 
implemented both explicitly and implicitly4 and have generated crisp non-oscillatory shocks for 
quasi-1D gasdynamics flows. Recently, Liou and van Leer6 have presented a thorough com- 
parison of various splittings and conclude that a robust algorithm is achieved by using different 
splittings for the implicit and explicit operators. The geometric appeal of these constructions is 
considerable, since the derivations pivot on classical notions of characteristics, hence signal 
propagation directions. However, the straightforward extension of these intrinsically ID schemes 
to multi-dimensional formulations leads to formulational ambiguities, hence algorithms that are 
extensively coupled to the underlying grid. Powell and van Leer’ have addressed this crucial issue 
and developed a ‘cell vertex scheme where the grid components of the convection speed are 
known’. This entails local decomposition of the Euler equations into a set of convection equations 
so that conservation of mass, momentum and energy is satisfied. Therefore the resulting scheme is 
algebraically rather involved and their results remain affected by a usually modest dispersion 
error. 

An alternative formulation is proposed by Lerat,* who develops a fully discrete space-centred 
finite difference scheme for the Euler equations that, importantly, introduces an inherent coupling 
of the time derivatives of the unknown variable at various adjacent nodes. This feature 
distinguishes this scheme from Beam and Warming’s and intrinsically introduces an adequate 
amount of dissipation without added fourth-order difference expressions. This mechanism 
produces an algorithm that remains stable in the presence of shocks. The original development is 
based on uniform mesh and time step increments and leads to a variety of algorithms upon 
selection of specific numerical values for imbedded parameters. 

The notion of time derivative coupling is natural in the finite element method, via the semi- 
discretization mass matrix, and leads to schemes that are not affected by odd-even node 
decoupling for dissipative spatial semi-discretizations devoid of fourth-order difference terms. In 
this framework, Fletcher’ proposed a group-approximation least-squares algorithm for subsonic 
flows, while Tezduyar and Hughes” developed Petrov-Galerkin schemes to introduce adequate 
dissipation in a weak statement formulation. In distinction to these developments, Donea’ ’ 
derived the ‘Taylor-Galerkin’ finite element algorithm for hyperbolic equations. This formula- 
tional procedure employs a truncated Taylor series to generate a time-semi-discrete conservation 
law system which is subsequently discretized in space with bilinear basis functions. In this 
instance several stability mechanisms are introduced in continuous form upon restatement of the 
time derivatives with spatial derivatives via the original conservation law system. 

This fundamental procedure has been thoroughly analysed by Baker and Kim,’ who develop 
the ‘Taylor weak statement’ generalization for hyperbolic conservation law systems. This 
construction develops a so-called companion conservation law system that contains continuum 
expressions representing intrinsic dissipation terms. Whereupon, the standard Galerkin finite 
element fully discrete algorithm yields over a dozen independently derived schemes upon 
identification of the imbedded parameter set. The analysis indicates that the companion conser- 
vation law system approach can lead to stable centred semi-discrete schemes on arbitrary grids 
upon selection of opportune length and velocity scales in the continuum dissipation operator. 

A significant advancement in the area of stable boundary conditions for the full compressible 
Navier-Stokes equations was presented by Dutt,I3 who derived statements for ‘maximally 
dissipative’ boundary conditions. In his analysis these are determined such that the time variation 
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of a Navier-Stokes system energy functional is bounded. The development focused on essentially 
unidirectional flows and heuristically assumes that a bounded energy time variation induces a 
bounded solution. 

Herein, Dutt's analysis is generalized for multidimensional problems and is interpreted as an 
application of a generalized Lyapunov stability theory.14-' Stable boundary conditions for the 
Navier-Stokes equations are derived and their dependence on inflow and outflow Mach number 
is clearly identified and assessed. Further, the connection between bounded energy variation and 
a stable solution is analytically established. The derived conditions constrain the outflow static 
pressure and the surface deviatoric tractions, as well as momentum and heat fluxes, and can be 
effectively enforced via the Galerkin-weak-statement-derived surface integrals. 

The Taylor weak statement is the basis for the development of the present Galerkin algorithm 
that employs a second-order non-linear dissipation operator. The latter is valid on arbitrary 
meshes upon selection of the computational space contravariant velocity components, multiplied 
by the determinant of the co-ordinate transformation Jacobians, as the representative scales. Of 
significance, the developed stability correction is sufficient to allow crisp and monotone solutions 
for large Courant number in the framework of an implicit block-tridiagonal linear algebra solver. 
This is attained via combination of this stability mechanism with a finite element double 
interpolation, to reduce local truncation error in the flux vector semi-discretization, and an 
implicit Rosenbrock-Runge-Kutta time integration, to simultaneously obtain second-order 
accuracy and stiff stability. The terminal sparse matrix system is then efficiently solved via a 
tensor product factorization. The developed finite element CFD algorithm is verified for a range 
of transonic aerodynamic flows. These include a quasi-1D shocked flow in an off-design de Lava1 
nozzle, and 2D inviscid and viscous laminar flows about a parabolic arc aerofoil. All CFD 
solutions are verified monotone throughout the computational domain, including the bound- 
aries, and each accurately resolves all flow features, including shocks and shock-induced massive 
boundary layer separation. 

The outline of this paper is as follows. Section 2 presents the appropriate conservation law form 
and attendant non-dimensionalization, and Section 3 details the derivation of the selected 
conservation law system and formulation of the continuum weak statement. In Section 4, well- 
posed boundary conditions are derived using a recently proved Lyapunov stability theorem, 
whereupon pertinent implementation issues are discussed. Subsequently, a method for initial 
condition generation is derived in Section 5. The finite element spatial semi-discretization 
is developed in Section 6 and the implicit Rosenbrock-Runge-Kutta scheme is presented in 
Section 7. To conclude, Section 8 details the tensor product factorization and Section 9 
presents the results for the selected benchmark numerical validations. 

2. CONSERVATION LAW SYSTEM 

The partial differential equation system governing compressible viscous flows written in conser- 
vation law form is 

(1) 9 ( q ) = - + V . ( f - f V ) = O  a4 on R+ xR,  RcR", 
at 

where !R+ denotes the positive real number field and n denotes the spatial dimensionality. 
Further, q = q ( x ,  t)  is the state variable f = f(q) is the kinematic-kinetic flux vector and f'= f '(4) 
contains the constitutive dissipation fluxes. In the sequel a lowercase letter denotes an array, a 
capital letter denotes a square matrix and boldface signifies a vector. 
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The Cartesian component Navier-Stokes equations are obtained for ( l ) ,  using subscript i, j 
tensor indices, through the following specifications: 

0 
oij 

~ ~ ~ m ~ / p + L y / R e P r ( y  - l)]aT/axi 

The non-dimensional deviatoric stress tensor oij is defined as 

(3) 

In expressions (2)-(4), p is the fluid density, mi = pui is the linear momentum, e is the total specific 
energy and p is the static pressure, which is assumed to satisfy the polytropic gas law 

p = ( y - 1 )  ( e--- “ ; Y ” i ) ,  (5 )  

where y is the specific heat ratio. 
The typical reference state for the non-dimensionalization of q ( x ,  t)  and the flux vectors f and f’ 

is the inlet state, with density p ,  and principal velocity component U , ,  as well as a convenient 
length measure L. Time is scaled by L/U,  whereas static pressure and total specific energy e are 
scaled by the reference dynamic pressure pa, U L . Hence the static temperature non-dimen- 
sionalization is via U L / R ,  where R is the polytropic gas constant, yielding the reference 
temperature 

where M, is the freestream Mach number and T ,  is the corresponding temperature. Conse- 
quently, the non-dimensional static temperature definition is 

Finally, Re and Pr denote the Reynolds and Prandtl numbers respectively, defined as 

C P P ,  
9 Pr=- ,  P m  U , L  Re E 

CL, k ,  
where cp is the specific heat at constant pressure while p, and k, are the freestream dynamic 
viscosity and heat conductivity respectively. In the sequel the term y/Re Pr(y - 1 )  is indicated by 
(Pe) -  l ,  the inverse of a generalized Peclet number. Note that with this non-dimensionalization 
the Mach number M, does not explicitly appear in the governing equations. However, its 
influence is reflected in the magnitude of the inlet total specific energy e. 
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3. TAYLOR WEAK STATEMENT ALGORITHM 

The dominant error mode introduced in the spatial semi-discretization of (1) is dispersive, which 
can propagate throughout the computational domain, hence corrupt the approximate solution 
process and possibly lead to iterative divergence. Furthermore, since f is a non-linear function 
of q, (1) admits non-smooth solutions containing shock waves, rarefactions and contact dis- 
continuities which aggravate this intrinsic error mechanism. To counter such solution degrada- 
tion, we derive a 'companion conservation law system' such that its semi-discrete analogue solution 
closely models that of the given system (1). Then a stable and efficient time integration is achieved 
via a non-linearly stable implicit Rosenbrock-Runge-Kutta (IRK) algorithm." 

3.1. Companion conservation law system 

The companion conservation law system is developed via augmentation of (1) with an 
expression identified through semi-discrete truncation error determination via the' the corres- 
ponding TWS theory.' The developed modified conservation law system is amenable to exacting 
analysis for both dispersive and dissipative semi-discrete and/or fully discrete error mechanisms. 
A Taylor series identifies lead truncation error terms in a time semi-discretization of the inviscid 
Euler equation subset of (1). The analysis focuses on this system since a centred semi-discretiz- 
ation of the convection terms in f, thereto associated, is the operation that triggers emergence of 
dispersive instability. Thereupon, the second time derivative is re-expressed in terms of spatial 
derivatives of f of the original partial differential equations. The arbitrariness intrinsic to this 
procedure introduces parameters eligible for constraints, such that an optimally accurate and/or 
stable semi-discrete solution procedure can be generated by solving the resultant ordinary 
differential equation (ODE) system. 

Assuming the solution of the Euler form of (1) exists, and is at least three times differentiable, a 
Taylor series exists of the form 

where At=t"+'-t" with n denoting the discrete time index and n+ indicating a time level 
between n and n +  1. If the implicit backwards Euler rule is applied to (1) forfj'=O, the resulting 
scheme is 

1 - q 
= -V.f, 

At  

which is recast via (9) as 

The implicit Euler rule is known to introduce substantial artificial dissipation which, according to 
relation (1 l), is expressed by the second partial derivative in time of the state variable q. Therefore 
this derivative is selected as the basis for an effective numerical dissipation term that stabilizes 
central scheme semi-discrete convection terms. 

The following derivations detail the modifications employed to synthesize a dissipation 
mechanism that allows second-order time accuracy, independent of At, which decreases in 
intensity as a representative length parameter is reduced. For the curvilinear co-ordinate Euler 
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equations the second time derivative in (1 1) may be expressed as 

Here J denotes the co-ordinate transformation Jacobian matrix with entries axj/aqi and deter- 
minant det J ,  and eij  are the elements of the matrix (detJ)J- ' .  In (12), At is replaced by the 
curvilinear co-ordinate Courant number expression 

where Ci is associated with a,,,, the ith physical component of velocity in the curvilinear co- 
ordinate system q. Using tensor analysis,'* this component is expressible in 2D as 

Inserting this into (13) yields 

whereupon the dissipation limiter pi is defined as 

Subsequently, inserting (15) and (16) into (12) yields 

This expression is further simplified as follows. First, the indices k and 1 are contracted, 
whereupon the product ejk(afj/aq)eik(ajJaq) comprises the term ejkujeikui. Hence this suggests the 
replacement 

where D is a constant positive diagonal matrix. Consequently, the terminal simplified form of (17) 
is 

SFB[-(/U, detJ aq, $)I, 
where B (capital beta) is a diagonal matrix of at present arbitrary coefficients. Note that the 
magnitude of this form of dissipation vanishes as the values of the metrics eik in [u[ decrease, as 
they do under grid refinement. The operator s is then explicitly added to (1) to yield the desired 
'companion conservation law system' 
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Thereupon, the convection terms in this system can be spatially semi-discretized using in- 
trinsically non-dissipative centred schemes, i.e. a Galerkin method,lg to yield a stable ODE 
system. Note that if this ODE system is stable for Re+co, then it is all the more so when Re is 
finite, since centred scheme semi-discretizations of diffusion terms are intrinsically stable. 

3.2. Weak statement 

A weak statement for (20) is written as 

det J all, 
where w is a representative arbitrary element of the Hilbert space S" for m2O.  The associated 
symmetrized weak statement form is developed by transforming (21) using a Green4auss 
theorem yielding 

where R, is the image of R in q-space and nj  denotes thejth component of the outward-pointing 
unit vector n on the boundary dT of dR. This system is, by components of q, 

wmjnjdT=O 

for the continuity equation, 

for the momentum equations, 1 < i < n = 2, and 

for the energy equation. 
Note that the momentum flux, deviatoric tractions and heat flux are the integrands of the 

respective flux vector term surface integrals. Their naturally occurring presence permits effective 
implicit imposition of all appropriate boundary conditions. Conversely, the surface integral 
resulting from the TWS-generated term may be discarded to provide the intrinsically weak 
homogeneous Neumann boundary condition for the dissipation operator term (19). This action 
guarantees well-posedness for the companion conservation law system (20) even as Re+ co. 
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4. BOUNDARY CONDITIONS 

The numbers of Dirichlet boundary conditions for the n-dimensional Eulerpavier-Stokes 
equations that derive from Strikwerda's work" are as follows. 

Navier-Stokes equations 

n + 2 conditions on an inflow boundary 
n +  1 conditions on an outflow boundary. 

Euler equations 

n + 2 conditions for supersonic inflow 
n +  1 conditions for subsonic inflow 
1 condition for subsonic outflow 
0 conditions for supersonic outflow. 

Here n is the dimension of Q. An admissible specific boundary condition set can be derived 
following Dutt's analysis,13 whereupon it is shown that the weak statement (12) provides by 
default the venue to enforce the derived well-posed conditions rigorously and efficiently. 

4.1. Choice of boundary conditions 

This analysis details the derivation of a specific set of boundary conditions that promotes 
solution boundedness for (l), hence (23)-(25). For an arbitrary partial differential equation system 
this can be established upon invoking Lyapunov stability theory.14-16 This theory is based on a 
non-decreasing functional, or generalized system energy, and its total time derivative as associ- 
ated with the given equation set. As shown in the sequel, the stability expression can be cast in 
terms of functions on the boundary of the domain Q, which can be constrained to satisfy the 
following generalized stability theorem, recently attained. 

Theorem I (lannelli) 

satisfies the conditions: 
Let V =  V(t, q) be a Lyapunov function defined on R+ x R", with ~ E R +  and q E W ,  which 

(1) c(ll q I \ )<  V(t, q), where c( 1) q 11) is a continuously increasing function and c( )I q Il)+oo as 

(2) (d V/dtkD, = f ( t ,  q)  - g(t,  q),where subscript 'PDE denotes a time derivative along a solu- 
tion q of the given partial differential equation,f is a continuous function bounded above 
and g is a positive continuously increasing function. 

II 4 II + 0-3 

Then the solutions q are bounded. 

Proof: If f ( t ,  q ) < O ,  then this theorem reverts to the classical Lyapunov theory stability 
condition proved in Reference 16. Conversely, if f ( t ,  q ) > O ,  then the theorem is proved by 
contradiction: 

(i) suppose 3 t*\(dV/dt)pD,=f(t, q ) - g ( t ,  q)>o, V t > t *  

(ii) =j g(t,  q)-=f(t, q), W X ,  t)\t> t *  
(iii) - V(t, q) grows V t  > t* 
(iv) * 11 q(x, t)  ( 1  grows V t  P t*, since V(t, q)  is continuously increasing 
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(v) 3 x b ,  f\g(t,q(x,t))>max(f(t,q(x,t))), Vt>Z  Vx€S~(x:Ilx--xb11<6)cn, 6>0, 
since g(t ,  q(x ,  t ) )  is continuously increasing and max {f(t, q(x ,  t ) ) }  6 K = const., sincef is 
bounded. 

However, (v) contradicts (ii), hence (i) does not hold Vt  > t*, consequently q(x ,  t )  does not grow 
Vt>Z. An analogous contradiction is reached by assuming in (i) an opposite inequality for the 
time derivative of V. Therefore, q(x ,  t )  can be at most a bounded oscillatory function since V(t, q) 
is analogous, though not equal, to a norm of q(x,  t )  and Vmi,(t, q)< V(t ,  q)< V,,,(t, 4, with 

0 

The application of this theorem can be exemplified via determination of the well-known 
admissible boundary condition for a linear hyperbolic partial differential equation. Thereafter, 
the corresponding boundary conditions for the full Navier-Stokes system are established. The 
linear model equation is 

Vm,,(t, q) < K = const., since (i) does not hold Vt  > t*. 

a4 a4 -+u-=o, 
at ax 

defined in the domain R [a, b ]  x [ to,  a), where u is a positive constant. The well-posed 
boundary condition for (26) is 

q(a, t ) = q a ( t ) ,  (27) 

which is readily derived as follows. An admissible Lyapunov functional associated to (26) is 

(28) 

with time derivative 

:=jab q 2 d x .  at 

Equation (29), upon substitution of &/at via (26), becomes 

K= - u  Jabq z d x =  - u  r- a [-Id., q2 
dt ax 2 

which can be integrated exactly exposing the boundary function 

dV -=u[;]x;a-u[;] . 
dt x = b  

Note that (31) satisfies the hypotheses of Theorem 1 upon setting q(a, t )=qa( t ) ,  where q,(t) is a 
continuous function bounded above. Consequently, the boundary condition (27) is well posed. 

Dutt’s analysis indicates that a system energy functional for the full Navier-Stokes equations 
can be derived utilizing an ‘entropy’ functional of the Euler equations, which we select as 

where p and p ,  to be determined, represent a reference thermodynamic state such that 
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and 

(5 - ;) < 0. (34) 

It is shown in Reference 13 that V in (32) is a strictly positive and convex function that satisfies the 
relation 

where the expressions for Fj and dV/aq are 

The Lyapunov functional is defined as 

where aV/at is derived utilizing the Navier-Stokes equations as follows. First 

--+ a v a q  ava4 avac - , ,  
aq at aq axj aq axj 

hence 

av a v a j  aq avay -+--'---2=o 
at aq aqaxj aq axj ' 

av aF. avay 
at axj aq axj 

whereupon, using (35), 

-++' - -L=O.  

Consequently, the Lyapunov functional time derivative is 

Integrating (42) by the Green-Gauss theorem yields 

(39) 
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Since the domain integral in (43) is po~itive, '~ the following inequality is obtained for the time 
derivative of S: 

l)p]dT+ 
dS 

+ faQ ( y  - 1) (i -:) Pe- VT. n dT. 

For dR= dRi, u df&,,, u dJ20ut, where alli,, df&,,, and dQut are the boundary segments along 
which m * n < 0, m * n = 0 and m - n > 0 respectively, expression (44) becomes in expanded form 

Expression (45) is instrumental in deriving suitable Navier-Stokes system boundary conditions 
that allow satisfying the hypotheses of Theorem 1 and thereby guarantee solution stability in the 
bounded energy sense. Note that this expression depends upon the momentum flux, deviatoric 
tractions and heat flux, in strict correspondence with terms in 
Consequently, the extracted boundary conditions constrain the 
directly enforceable in (23H25). Note also that expressing p via 
equality 

the weak statement (23H25). 
values of these terms and are 
state equation (5 )  leads to the 

used in the derivation of the inlet conditions. 
The functions g(t ,  q)  of Theorem 1 can be identified as 

while the function f ( t ,  q ( x ,  t ) )  corresponds to the sum of the remaining integrals. The following 
Navier-Stokes boundary conditions prevent the positive growth of these integrals. They further 
revert to admissible Euler equation system boundary conditions as R e + m  
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(48) 
m 
P 

e = ein, o i jn j=  aij - - ' s j  + gi ,  P = P i n ,  

where s j ,  1 < j < n -  1, is the unit tangent vector (pair) on dT with unit normal n. Note that (48) 
constitutes a Robin mixed boundary condition statement for the momentum equations for any 
finite Re. The rank of the matrix [ail, ai2, gi] must be n - 1 so that (48) reduces to n + 1 boundary 
conditions as Re+ co. Further, the matrices aij must be bounded negative definite and the column 
matrix gi must be a bounded function. This choice is valid since for subsonic flows 

mi mi Y ( Y - l ) e p .  
~ < yp, hence mimi < ~ 

P Y+l 

Consequently, both m-n  and T are bounded since both p and e are constrained. 

Supersonic inflow 

P = P i n t  e = e,,, m=m,. 

This choice is valid since it leads to bounded inflow integrals. 

(49) 

Wall boundaries 

m - n = 0 (inviscid flow), 

(51) 
aT 
an 

mj=O, Vj, aT+-=g, (viscous flow), 

where a<O and gT is a bounded function. Note that in either instance (51) leads to bounded 
surface integrals on aOwaIl. 

Concerning the outflow boundary conditions, these must lead to a positive function (47) as 
required by Theorem 1. The function is cast as 

and is positive if the expression in square brackets remains positive since (m * n)out > 0. This 
requirement is met if the following sufficient conditions are satisfied: 

Hence 

(Pminlout 

<(log-base e) ' (55)  

P>(Pmax)out* (56) 

The constraint on p is evidently satisfied without any additional Mach-number-dependent 
specification on outflow density. Conversely, the constraint on p is met for subsonic outflows 
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when an outlet pressure boundary condition is imposed. This is detailed in the sequel, where 
suitable specifications are introduced that contribute to the positivity of (52) and boundedness 
and/or negativity of the remaining outflow integrals in (45). 

Subsonic outflow 

aijnj=O, Pe-  (aT + g ) = 0, P =Pout, (57) 

where a 6 0. These constraints reduce to a single boundary condition on p as Re+ 00. Note that 
the constant p in (54) and (56) exists since pout, hence (pmax)outr is constrained. 

Supersonic outflow 

g. IJ .n J .= 0 ’ Pe-  ( a  T+ g ) = 0, 

where a 6 O .  Note that these constraints vanish identically as Re+co. Further, in this case also the 
constant p exists since pout decreases with increasing supersonic Mach number. 

In summary, (48), (50), (51), (57) and (58) specify constraints on the surface momentum flux, 
deviatoric tractions and heat flux vector. Note that no steady state solution q can exist if the heat 
flux surface integral in (44) does not asymptotically vanish in time. Since T = p / p ,  constraints (57) 
can be recast as 

P = Pout 3 (59) 

for any finite Re. Considering that the outlet static density is determined via the continuity 
equation, these constraints are ultimately outlet pressure specifications which are linearly 
independent. Since the heat conduction operator is second-order-elliptic, thus requiring one 
boundary condition, either the second or third expression in (57) should be used within a viscous 
layer extending to an outlet. This algorithm implements the first expression in (57) coupled with 
either the second in (57) in such a region, or the third in (57) in essentially inviscid flow outlet 
regions. The numerical results to be discussed document the performance of this combination and 
support its validity. 

The boundary conditions (48), (50), (51), (57) and (58 )  collectively prevent the positive growth of 
all integrals in (45) except the term 

1 

an,,, P 
(61) 1 - (m * n) c U q )  - (Y - 1 ) P l  dl- > 0, 

which is allowed to vary. Consequently, the hypotheses of Theorem 1 are satisfied and therefore 
the solution q of (l), complemented by the derived boundary conditions, is bounded. 

4.2. Implemeniation of boundary conditions 

The enforcement of Dirichlet boundary conditions on the state variable q is a routine matter 
and is fully described in Reference 19. Concerning the other derived constraints, these are keyed 
to the weak statement surface integrals in (23H25). Specifically, to impose the wall tangency 
boundary condition (51), it is sufficient to delete the appropriate momentum flux surface integrals 
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in (23H25) that would otherwise be computed along any wall segment. Analogously, the 
deviatoric traction and heat flux boundary conditions are effectively enforced for all values of Re 
by replacing the arguments of the relevant integrals in (24) and (25) with expressions (48), (51), (57) 
and (58). In particular, the explicit presence of the static pressure p in (24) and (25) suggests a 
direct enforcement without augmenting these equations with an additional constraint, usually the 
time derivative of the state equation ( 5 )  set to zero.6 The advantages of this procedure are twofold. 
First, the critical exit pressure boundary condition is ‘extensively’ enforced in the sense that it 
actively functions in the momentum and energy equations. Secondly, this procedure does not 
structurally modify the equation system to any degree. Very likely, these advantages translate 
into the overall monotonicity displayed by the TWS algorithm solutions to be discussed. 

5. INITIAL CONDITIONS 

To expeditiously attain a steady state, the solution initial field q(x, t o )  should model in some sense 
the final solution. For n-dimensional confined flow problems, computations can be initialized 
with the isentropic quasi-one-dimensional steady solution for p and e. For example, for n = 2 the 
initial distribution for (mx)2D is determined after establishing the initial Values for ()ny)2D. 

Expressing the quasi-1D continuity equation source term with the initial (mX)ZD and equating it 
with the partial derivative of (my)2D with respect to y yields 

(mx )ZD = (mx 1 D cos C~(Y)I, (62) 

where 8(y) is the geometric angularity. Since (mx)QID is a function of x only, and the variation of 
8(y) is assumed to satisfy cos 8 = 1, then the approximate direct integration of (63) yields 

where yT is the centre-plane ordinate along which my = 0; see Figure 1. 

as is easily shown. Assume the geometric form is mathematically expressed as 
Importantly, the distribution of (my)2D computed via (64) satisfies the wall tangency constraint, 

A ( x ) =  ~ ( Y T - Y B ) ,  (65) 
where 1= 1 is the channel unit transverse width. Consequently, 

therefore 

which, upon setting y = y,, specializes to 

my = m, tan Ce(Y)l, (68) 

h ) h  -t (my)&=(mx)&D. (69) 

i.e. the wall tangency constraint. Finally, the corresponding (mx)2D is obtained with (62) so that 
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Z 

Figure 1. Internal flow domain geometry 

For an external flaw field problem the procedure is analogous. Specifically, one replaces y, 
with an appropriate reference level y, in (57) so that the values of (my)2D, as obtained with y=y,, 
correspond to an admissible outer boundary distribution for this momentum component. 

6. FINITE ELEMENT SEMI-DISCRETIZATION 

The finite element spatial semi-discrete approximations qh, fh  and f vh to the Navier-Stokes 
variables q, f and f' respectively are constructed by projection of the solution q onto a finite- 
dimensional Sobolev subspace SM of the Hilbert space s" of all admissible trial functions. In this 
study the Galerkin criterion is used, hence the test functions w (see (22)) are the identical members 
of S,. Further, the semi-discretization Rh of the solution domain R, i.e. 

is obtained by subdividing 51: into M e  quadrilateral finite elements each denoted Re. 
Inserting qh as well as fh and fVh in (23H25) yields the finite element semi-discrete statement 

dR - VW - fh dR + Vw .fvh dR 
e =  1 

w fh .  n dT - wfYh.n dT + I3 I& V,W V,qh dq = 0, 
+ fane fan. ) (71) 

where fie is the image of each element Re in the computational space q and V,,= d/aql. The chosen 
subspace S, is formed by unions of bilinear Lagrange polynomials of the local element co- 
ordinates q. These unions are the generalized hat functions N,(q )  which attain the value unity at 
node xi and zero at all other nodes, have support on all the elements that share xi and identically 
vanish on all other elements elsewhere in ah. Consequently, for time and space separability, the 
semi-discrete expansion for qh is 

M 
qh(x(a), t)' c "(v)q' ( t ) ,  (72) 

I =  1 
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where M is the total number of nodes in R" and q'(t)  denotes the time-dependent expansion 
coefficient at node 1. Analogously, the expansions for f" and f'" in terms of Cartesian components 
are 

where 

Note that a double interpolation is used to discretize the convection terms rather than employing 
the 'group approximation'.' This reduces the formal interpolation error and is verified to yield an 
appropriate improvement in solution accuracy, especially around shocks. 

The co-ordinate transformation from Cartesian to curvilinear co-ordinates is accommodated 
in each integral in (71), and for the isoparametric procedure" is expressed via a relation 
analogous to (72) as 

where VE [ - 1; + 11 x [ - 1; + 11 spans each Re where N ,  is supported. Thereafter, the relation 
between the partial derivatives with respect to qi and xi and its inverse are 

{ Z} = [ 21 { &} 
and 

(77) 

where [J] denotes the Jacobian matrix with entries axj /aqi  and determinant det J ,  and e i j  are the 
elements in the matrix (det J )  [J]-'. Further, the area differential dR is recast as 

dR = (det J )  dq. (79) 

Expressions (72)-(75) as well as (78) and (79) are then inserted in (71) to allow the explicit 
evaluation on each Q,. Finally, the terminal ordinary differential equation system is expressed at 
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the representative node r as 

'Nr a N r a N k  k J)dq- ejk -NIm:(t)dq+Bp lus(t)l N,--p (t)dq=O, (80) 
16 '?k 8% all, 

where 8 is the image of Oh in the computational space q. 
The boundary values of the semi-discrete pressure p' in (81) and (82) are enforced as follows. 

With reference to Figure 2, the prescribed values of pressure along nodal line 'I + 1' replace the 
values p"(t)  in the formation of (81) and (82). This replacement affects all semi-discrete equations 
assembled at each node on line 'I+ l', and also every equation formulated at each node at line 'I' 
since these also couple nodes 'm'. Moreover, the known pressure values are also inserted in the 
appropriate Jacobian contributions, in the implicit integration, and therein (8ph/aqh)out is set to 
zero. The numerical results support the validity of this operational procedure. 

Given that accurate solutions of the Navier-Stokes equations demand refined grids, a con- 
venient and cost-effective approximate evaluation of each integral in (80)-(82) is obtained by 

m + 3  

n 

Figure 2. Illustration of outflow pressure imposition 
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assuming piecewise constant metric data which, consequently, are extracted from each integral. 
This procedure is exemplified by the following representative term: 

Here ejk(o) is the metric data element evaluated at the element centroid and {array} denotes the 
(Cartesian element shape-independent) data resulting from the remaining integral.Ig This evalu- 
ation procedure, which is illustrated by (83) and also involves usage of centroidal evaluations of 
det J, is extended to all metric data in (80)-(82). This technique permits extraction of all metric 
data from the associated integrals. Consequently, the terminal system formation requires only a 
few spatial integrations which are exactly carried out once and for all as a preprocessor operation. 
Thereby, the compute-intensive element-by-element numerical integration at each time level is 
totally eliminated, hence the resulting procedure becomes competitive with difference-coding 
methodology. 

7. ORDINARY DIFFERENTIAL EQUATION SYSTEM AND IMPLICIT 
RUNGE-KUTTA INTEGRATION 

Equations (80)-(82) constitute the finite element semi-discretization which yields the global order 
ordinary differential equation (ODE). The ODE statement for a 2D domain Rh is 

where d# is the semi-discretization mass matrix and ij is the array of nodal values of 4'. Note that 
each entry in this array consists of four components. Concurrently, the array Xdefines the sum of 
the discretized q, partial derivatives of the inviscid, viscous and dissipation fluxes. 

The usual implicit time algorithms for the integration of (84) are the one-stage 'theta 
algorithms','~2~6 which, in a one-iteration mode, yield the delta-forrn terminal matrix statement 

4 n +  1 4. + k,, (85) 

where n indicates the discrete time station. For 830.5 this algorithm family is unconditionally 
stable with respect to the linear model problem 

Specifically, 8= 1 yields the backwards Euler rule, which allows quick convergence to steady state 
even though it is only first-order-accurate. Conversely, 8 =$ leads to a second-order-accurate 
algorithm, the Crank-Nicolson rule, which, however, does not afford the same convergence rate 
as backwards Euler. Therefore, in order to have the desirable features of each of the mentioned 
algorithms in a single procedure, an implicit Rosenbrock-Runge-Kutta (IRK)26-34 scheme has 
been developed.' This algorithm expands the range of stable integration steps permitted by the 
backwards Euler rule and maintains second-order accuracy in time by integrating (84) with the 
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solution sequence: 

4, + 1 = g a  + ~1 k1 +c2k2. (87) 
This time algorithm has been analysed" and the results indicate that it is indeed optimally 

second-order-accurate and non-linearly stiffly stable. This effective combination is attained by 
selecting the IRK procedure coefficients so that the scheme is second-order-accurate and the 
magnitude of its amplification ratio for the non-linear model equation 

dq/dt=A1q+A2q2 (88) 
is less than unity and decays as the system characteristic eigenvalues grow unboundedly. 
Therefore, reliable unsteady simulations can be afforded without imposing severe restrictions on 
the time step. Concurrently, expeditious attainment of a steady state (when one exists) can also be 
obtained, as the documentary results will confirm. 

Note the important feature that no iteration is defined; instead, (87) constitutes a two-stage 
non-iterative procedure for establishing the arrays k ,  and k,, hence cj.+ 1. The optimal values of 
the IRK scalar parameters are 

a=0.292 893 219, /!Iz = 0435 28 1 374, 

c1 =0.573 223 304, ~,=0-426776696. 
(89) 

Note also that with the following determination, 

a = &  B2l =o, 
c1= 1, c,=o, 

(87) yields the implicit &algorithms (86). 

8. TENSOR MATRIX PRODUCT APPROXIMATION FACTORIZATION 

The solution of (87) at time level n+ 1 is obtained in practice using a tensor matrix product 
approximate factorization of the IRK Jacobian matrices. This replaces the defined large sparse 
matrices with an efficient sequence of banded matrix operations.', 1-z3 Hence each linear system 
in (87) is recast as 

where 0 denotes the matrix tensor product.19 Each matrix component contains decoupled inner 
blocks that correspond to the Jacobians of the semi-discrete equations formulated at the nodes on 
independent grid lines. Hence, as indicated by the subscripts 1 and 2 in (91), the two component 
matrices are formed using strictly one-dimensional operators associated to the curvilinear co- 
ordinates qI and t7,. Significantly, each matrix always remains block-tridiagonai whatever the 
order and bandwidth of the associated multidimensional matrix are. The approximate 
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solution for system (91) is obtained with the sequence 

[ A , + ~ A t r & ] ~ ] k ~ = , i .  1 < i < 2 .  

Noting in (92) the subscript range for i, the IRK solution arrays are specifically computed by the 
following steps. 

1. Form [A, + a A t [ d ~ / a @ ] , ]  and -AtX:= lj;”(qn+Bzl k , @ )  along co-ordinate curves in the 
r]  ,-direction, enforce appropriate boundary conditions and solve for the intermediate 
array 1 , .  

2. Form [A, +&At  [d&/d@],]  along co-ordinate curves in the ?,-direction, enforce appropri- 
ate boundary conditions and solve for the intermediate array k, . 

3. Repeat steps 1 and 2 for i = 2, hence determine k , .  

Additional details are given in Reference 34. 

9. DISCUSSION AND RESULTS 

Numerical verifications have focused on benchmark quasi-1D shocked inviscid flows and 2D 
transonic inviscid and viscous flows. The computational results confirm the effectiveness of the 
TWS algorithm dissipation mechanism to counter the spatial semi-discretization dispersive error 
as well as the developed boundary conditions and relevant implementation. They also document 
the relative accuracy and stability of the backwards Euler (EU), trapezoidal/Crank-Nicolson rule 
(CN) and implicit Runge-Kutta (IRK) algorithms. 

9.1. Quasi-one-dimensional solutions 

The de Lava1 nozzle geometry and test problem specification of Liou and van Leer6 have 
been utilized for this test. The computational experiment boundary conditions are p(0, t ) = p i n ,  
e(0, t ) =  e, ,  and p(L, t ) = p o u t .  Solutions were generated using various constant integration 
time steps 0005 < A t  60 .3 ,  corresponding to the range 0.65 < CFL,,, < 35. The initial condition 
was steady state isentropic subsonic flow throughout. 

An appropriate specification to evaluate accuracy and stability is for an impulsive change from 
the steady subsonic state, as accomplished by a step decrease in exit pressure pout at t=O.  The 
resultant rarefaction propagates upstream as an expansion wave which, upon reaching the nozzle 
throat, triggers the development of a normal shock wave. Liou and van Leer’s steady state 
problem definition parameters are 

Mi, = 0.24, ~ o u t l ~ t o t a l  in =0.84, (93) 
and the theoretical steady state predicts a normal shock at location x/L=O.65 with shock Mach 
number M ,  = 1.40. Figure 3 sketches the nozzle geometry with cross-sectional area distribution 

(94) 
1.75 -0.75 cos [ ( x  - 0 5 ) 7 ~ / 0 . 5 ] ,  0.0 < x G0.5, i 1.25-0.25 cos [ ( ~ - 0 5 ) 7 ~ / 0 . 5 ] ,  O . ~ < X <  1.0. 

A(x)  = 

A uniform M = 100 node spatial discretization was employed, in concert with a linear trial space 
finite element implementation of the Taylor weak statement (TWS) semi-discrete formulation. 
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Figure 3. De Lava1 nozzle and initial condition Mach number profile 
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0.80 

0.10 4, 
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.0 0.0 1.0 

Figure 4. TWS finiteelement quasi-ID Euler algorithm steady state solution, M s =  1.40: (a)momentum; (b) Mach number 

The TWS steady state solution is graphically summarized in Figures +a) and 4(b) as 
momentum and Mach number distributions respectively. Convergence to steady state using the 
IRK algorithm was achieved within 60 steps for the dynamically optimized TWS dissipation 
parameter set B, =0~164[1~OO,093,0~98]. The fully discrete nodal solution is essentially non- 
oscillatory (ENO) and the shock is quite crisp, being captured within three elements. Further- 
more, its location and upstream Mach number are accurately predicted (Figure +b)) and the 
associated discrete approximation to the Rankine-Hugoniot jump condition is clearly evident in 
Figure +a). 

For comparison, Figure 5 displays the solution Mach distributions published by Liou and van 
Leer as obtained using several first- and second-order-accurate flux-splitting algorithms. They 
report that steady state convergence is achieved within 159 time steps using the backwards Euler 
rule. The first-order van Leer splitting appears to be the only procedure that yields a solution 
devoid of the shock precursory overshoots present in all second-order solutions. Comparing 
Figures 4 and 5 thus verifies that the selected TWS semi-discrete algorithm can yield accurate 
results for the problem class to be addressed. Hence a time-accurate evolution will be affected 
principally by At and the chosen time algorithm. 
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Figure 5. Quasi-1D Euler steady state solutions, various flux splitting algorithm solutions, from Liou and van Leer6 

Next, the unsteady solution evolutions obtained by each time algorithm are quantitatively 
compared at a specified time station and for various time step sizes for the de Lava1 nozzle 
problem. Figures 6(a)-6(f) summarize the reference time-accurate solution in terms of the Mach 
number distribution as obtained at six pertinent time stations. This is computed using the IRK 
algorithm with Ar = 0 0 0 5  s, which renders the time truncation error negligible. Specifically, 
Figures 6(ak6(c) illustrate the upstream propagation of the expansion wave travelling towards 
the throat as caused by the step decrease in exit pressure. The flow then chokes and a normal 
shock wave forms and strengthens in moving downstream as indicated in Figure 6(e). The nodal 
solution is E N 0  throughout, with a crisp shock which is captured across three elements at station 
t =  1.8 s and only two elements at station t=2*8 s. At these two time levels the shock Mach 
numbers are M ,  = 1.220 and M, = 1-330 respectively. Figures 7(ak7(c) graph the associated 
density, momentum and pressure solutions respectively at t = 1.8 s. 

This solution sequence was then repeated to compare Mach number distributions at time 
levels t=  1.0 and 1.8 s as computed with 0.2GAt G0.3 s. Figures 8(a)-8(c) are associated with 
Figure 6(b) and compare the three algorithm solutions obtained at t = 1.0 s using At = 0-2 s. 
The shock has not yet formed and the accurate peak Mach number is M,=0.95. The presence 
of the rarefaction wave is better defined in the IRK solution and the computed Mach number is 
indeed M ,  = 0.95. The trapezoidal rule also yields M ,  = 0.95 but displays an unacceptable 
outlet oscillation. Conversely, the backwards Euler solution reaches M ,  = 0.99 and is 
overly diffused, hence inaccurate. 

Figures 9(a)-9(c) are associated with Figure 6(e) and compare the nodal Mach number 
solutions at time level t=  1.8 s as obtained using At =0.2 s for each of the three integration 
algorithms. The accurate shock Mach numbers are M , ,  = 1.220 and M , ,  =0.824. The backwards 
Euler solution is monotone; however, the shock is overly diffused, since the Mach number 
distribution smoothly curves to negotiate the discontinuity, and the shock Mach numbers are 
M , ,  = 1.86 and M,,  =0*848. In contrast, the trapezoidal rule shows a sharper shock characterized 
by accurate shock Mach numbers. However, the post-shock solution is distorted and oscillatory, 
hence unacceptable. In distinction, the IRK solution remains ENO, with a crisp shock with 
correct shock Mach numbers. 

Finally, Figures l q a k l q c )  show the Mach number solution at time level t = 1.8 s but now 
determined employing At = 0.3 s for each procedure. All three solutions undergo a decrease in 
time accuracy. The backwards Euler solution is thoroughly diffused; the shock now is spread over 
four elements and the relevant shock Mach numbers are M , ,  = 1.10 and M,,  =0-818. The 
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Figure 6. Unsteady quasi-1D Euler solution, implicit Runge-Kutta, Mach number profiles, At =0.005 s: (a) t=0.4 s; 
(b) t = 1.0 s; (c) t = 1-2 s; (d) t = 1.4 s; (e) t = 1.8 s; (f) t = 2.8 s 
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Figure 7. Unsteady quasi-1D Euler solution, implicit 
Runge-Kutta, At =@005 s, t =  1.8 s: (a) density; (b) mo- 

Figure 8. Unsteady quasi-1D Euler solution, t = 1.0 s, 
A t = 0 2  s: -, from Figure qb); (a) EU, (b) C N  

mentum; (c) pressure (c) IRK 



FINITE ELEMENT ALGORITHM FOR AERODYNAMICS 43 1 

X X 

X 

-1 

, I , , , I , , , , ,  

0.0 0.1 0.2 0.3 O.¶ 0.5 0.6 0.7 0.9 0.9 1.0 
X 

'1 

d , , , , , , , , , ,  
0.0 0.1 0.2 0.1 0.k 0.5 0.8 0.7 0.8 0.9 1.0 

X 

Figure 9. Unsteady quasi-1D Euler solution, t = 1.8 s, Figure 10. Unsteady quasi-1D Euler solution, t = 1.8 s, 
At =0.2 s: -, from Figure qe); (a) EU; (b) CN, At =0.3 s: -, from Figure qe); (a) EU; (b) CN, (c) IRK 

(c) IRK 
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trapezoidal rule solution displays a crisper shock in the vicinity of the upstream curve and the 
shock Mach numbers are accurate. However, the downstream curve adjacent to the shock is 
somewhat diffused and affected by outlet oscillations. In distinction, the IRK solution remains 
notably superior, with very little distortion downstream of a visibly crisp shock, which has been 
computed at the maximum Courant number CFL = 35. Therefore these results firmly indicate 
that the IRK algorithm is of superior accuracy and highly competitive for this problem statement. 

9.2. Two-dimensional transonic aerodynamics solutions 

9.2.1. Znuiscid flow. The two-dimensional Euler test investigates a transonic flow around a 
parabolic arc aerofoil in a channeLZ4 The aerofoil thickness, based on the chord length, is 20%. 
The channel is three chords long and one chord wide. The modestly non-uniform grid contains 
65 x 35 bilinear finite elements, yielding 2376 nodes, and is body-fitted with vertical lines 
remaining parallel to the y-axis (Figure 1 l), with mesh clustering near the aerofoil surface. 
Dirichlet constraints on p, my and e are applied at the inlet, while the exit boundary condition is 
that static pressure pout that would yield a normal shock of prescribed strength in a strictly quasi- 
1D solution. The unsteady benchmark problem is the formation of a supersonic pocket with 
associated shock wave and allows critical evaluation of algorithm stability and accuracy. 

The backwards Euler (EU), trapezoidal rule/Crank-Nicolson (CN) and stiffly stable implicit 
Kosenbrock-Runge-Kutta (IRK) procedures were each employed to integrate the TWS-gener- 
ated ODE system (go), (81), with dissipation parameter set p,=0.2[1, 1, 1 ,  11, towards a steady 
state with extremum Mach number M ,  N 1.5. The initial condition was established numerically 
from an isentropic subcritical state for an exit pressure ratio p, , , /p ,  =0.72 and for M ,  =0-675 at 
the inlet. The resultant Mach number distribution is illustrated in perspective view in 
Figure 12(a). As is evident, the shock is not yet quite formed and the E N 0  nature of the finite 
element solution is clearly visible, both at the aerofoil leading and trailing edge singularities and 
at the outflow boundary. The decreased pressure ratio poUl/pm =0.62 was then imposed upon this 
reference state to start the unsteady evolution test. 

Figures 12(b)-12(d) show the resulting Mach number distribution at time t - to  = 7.9 s as 
obtained using At =0.1 s with each of the three time algorithms. The CN solution has incurred a 
fatal instability, as evidenced by the unbounded dispersive error corrupting the solution at the 
aerofoil trailing edge singularity. Conversely, the EU and IRK solutions are E N 0  and appear 
virtually identical with M,=1.13. Note that the Mach contour lines intersect the far-field 
boundary orthogonally, indicating an accurate boundary condition enforcement. 

Since the CN solution subsequently diverges, the conclusion is that the upper limit on the CN 
stable time step is smaller than that for the EU or IRK algorithms for this problem. Therefore the 

Figure 11. M = 6 5  x 35 non-uniform mesh for transonic parabolic arc problem 
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Figure 12. TWS algorithm unsteady solution, Euler equations, t - t o  = 2.0 s, transonic Mach number surface perspective 
and contours: (a) initial state; b) backwards Euler algorithm ( O =  1); (c) trapezoidal rule ( H = f ) ;  (d) implicit Runge-Kutta 

algorithm 

Figure 13. TWS algorithm unsteady solution perspective and contours, Euler equations, t-t,= 14.65 s, At=0.15 s, 
backwards Euler integration rule: (a) pressure; (b) Mach number 

comparison continued with only the last two procedures. Now setting At=0.15 s, Figures 13(a) 
and 1qa) compare the static pressure distributions at  time t -  to = 14.65 s, while Figures 13(b) and 
14(b) illustrate the relevant solution Mach number distributions. Both pressure surfaces clearly 
show peaks at the aerofoil leading and trailing edge singularities, which are preceded by a one-cell 
undershoot. (Presumably, this could be eliminated with an appropriate local grid refinement.) 
Away from these regions the pressure surfaces are E N 0  along the forming shock, which extends 
over three elements, and everywhere along the far-field and outflow boundaries. 

The associated contour plots of pressure indicate an emerging qualitative difference between 
these two TWS solutions. This can also be seen in the Mach number distributions, which display 
a crisper shock, hence better accuracy, for the IRK procedure. The EU Mach number curve along 
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Figure 14. TWS algorithm unsteady solution perspective and contours, Euler equations, t - - to= 14.65 s, At=O.15 s, 
implicit Runge-Kutta algorithm: (a) pressure; (b) Mach number 

Figure 15. TWS algorithm steady state velocity vector field, Euler equations, parabolic arc, MS= 1 3  

the aerofoil appears somewhat rounded two cells before the shock. Moreover, the peak Mach 
number (M,= 1.401) is not attained on the aerofoil surface but instead lies on the adjacent 
streamwise grid line. Conversely, the IRK solution aerofoil Mach number curve bends sharply to 
negotiate the shock; further, the Mach number monotonically decreases from M ,  = 1.46 into the 
field. 

Continued use of the fixed At =0.15 s caused the EU procedure to slowly diverge as the 
solution continued beyond this time level. Conversely, the IRK procedure converged directly to a 
steady state at the maximum Courant number C,,,= 100. Hence the IRK algorithm admits the 
largest stable time step among the procedures investigated for this benchmark problem. The final 
steady state solution is documented in Figures 15-18. Figure 15 shows the velocity field note that 
the shock is very close to the aerofoil trailing edge singularity. Figure 16 presents the contour 
plots of entropy, Mach number and the x-component of momentum. The entropy contours 
illustrate the production of entropy along the shock front. They also indicate that the TWS 
algorithm has generated a modest increase in entropy starting from the leading edge. Here again, 
this leading-edge-singularity-induced error can be eliminated with a local grid refinement. The 
contours of the x-component of momentum are E N 0  and contain virtually parallel segments 
orthogonally aligned along the shock. This pattern represents the nominal momentum 
Rankine-Hugoniot jump condition approximation, also readily evident in Figure 6(a) for the 
de Lava1 nozzle test. 

A further assessment of TWS solution quality is presented in Figure 17, which contains the 
surface perspective representation and contour plots of each component of the momentum 
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Figure 16. TWS algorithm steady state solution contours, Euler equations, parabolic arc, M , -  13: (a) entropy; (b) Mach 
number; (c) principal momentum 

Figure 17. TWS algorithm steady state solution surface and contours: (a) principal momentum; (b) transverse momentum 

Figure 18. TWS algorithm steady state solution surface and contours: (a) Mach number; (b) pressure 

vector. In both surfaces a one-cell-wide transverse plateau in the mesh emanates from the aerofoil 
and propagates upwards along the shock front. The local gradients in the surface of the principal 
momentum are quite substantial, especially at the leading and trailing edges, yet these singular- 
ities are negotiated without apparent under- or overshoot. Note how the outflow principal 
momentum distribution remains planar from the upper wall to about mid-channel, at the 
upstream state, and then smoothly decreases towards the lower boundary as total pressure is lost. 
The regularity of this curve also reflects favourably on the outflow pressure boundary condition 
enforcement. Finally, Figure 18 shows the steady state static pressure and Mach number 
distributions. Again, the contour lines intersect the upper wall orthogonally. The pressure surface 
appears E N 0  everywhere, with the possible exception of the leading and trailing edges singular- 
ities. The Mach number distribution also exhibits this feature, and the shock is quite crisp and 
captured within three elements with M, = 1.528. 
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9.2.2. Viscousj5ow. The two-dimensional Navier-Stokes tests are two viscous flows at differ- 
ent Reynolds numbers, both based on the aerofoil chord, in the channel geometry of the previous 
inviscid problem. The first test corresponds to Re % 2000 and the second to the increased value 
Re = 3 x lo6, more representative of practical aerodynamics applications. The relevant mesh for 
the first simulation, Figure 19(a), still contains M = 65 x 35 elements. However, the rather 
non-uniform element distribution now clusters more nodes at the aerodynamic surface where 
Aymin = 0.02. This mesh has permitted numerical simulations characterized by satisfactory 
compressible boundary layer resolution for this Reynolds number. The principal validation 
sought is adequacy of the derived viscous flow boundary condition specifications; where- 
upon, the developed steady state can be used as convenient initial flow field initialization 
for the larger-Reynolds-number case. 

The inlet condition corresponds to M ,  =0.615 and Dirichlet constraints on p ,  my and e are 
specified along with vanishing normal deviatoric traction. The various slip wall specifications are 
vanishing transverse momentum and tangential tractions. The aerofoil surface constraints are 
vanishing momentum vector and heat flux. Finally, the exit boundary conditions are specified as 
pout along with vanishing deviatoric tractions and heat flux. 

The Re=2000 steady state solution predicts a maximum Mach numbef M,,,=0.95 and is 
summarized in Figures 19-21. Figures 19(b) and 19(c) graph the Mach number perspective surface 
and velocity vector field respectively as obtained for /?,=0-2[1, 1, 1, 13. The laminar boundary 
layer appears to be satisfactorily resolved except perhaps for the significant leading edge 
stagnation region gradients. The Mach number surface terminates with a negative transverse 
slope at the trailing edge, which signals separation and an emerging recirculation zone. This is 
confirmed in the velocity vector field close-up detail, Figure 2qa). The Mach number isocline 
distribution, Figure 20(b), illustrates this important flow characteristic along with the merging of 
the essentially inviscid outer flow with the boundary layer and viscous wake. 

The latter is further illustrated in Figure 21, which graphs distributions of both components of 
the momentum vector as well as static pressure and temperature. The surface perspective 

Figure 19. TWS algorithm steady state solution, NavierHtokes equations, laminar Re=2000: (a) M =65 x 35 element 
discretization; (b) Mach number distribution; (c) velocity vector field 
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Figure 20. TWS algorithm steady state solution, Navier-Stokes equations, laminar Re = 2000: (a) trailing edge region 
velocity vector field; (b) Mach number isocline distribution 
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Figure 21. TWS algorithm steady state solution, Navier-Stokes equations, laminar Re= 2000: (a) transverse momentum; 
(b) principal momentum; (c) pressure; (d) temperature 

presentations clearly emphasize the flow detail, including the leading edge stagnation point peak, 
accompanied by a modest one-cell undershoot. Hence Re = 2000 is indeed the maximum this grid 
can support. Note how the outflow principal momentum distribution remains planar from the 
upper wall to about mid-channel and then smoothly declines towards the lower boundary value. 
This character is accompanied by a decisive temperature increase that initiates at the leading edge 
and continuously progresses towards the outlet. The regularity of all distributions reflects 
favourably on the viscous flow boundary condition definitions and enforcement procedure. 

This solution was employed as initial state for a subsequent simulation with increased 
Reynolds number Re = 4.6 x lo6 to compute a practical viscous transonic aerodynamics problem. 
The incipient leading edge oscillations in the results of the previous viscous problem test indicate 
the need for a more refined and adapted mesh. Hence the mesh for this test is now composed of 
M = 65 x 45 bilinear elements with considerable node clustering at the trailing and leading edges 
as well as on the aerodynamic surface, which now corresponds to a 4% thick aerofoil, as shown in 
Figure 22(a). In the aerodynamic surface region the mesh has adequate wall resolution with 
vertical measure equal to l /Re ;  therefore the transverse physical diffusion components can 
support the same order of magnitude as the longitudinal convection components. The TWS 
stability parameter set remained fixed at p,=02[1, 1, 1, 11, and for the boundary conditions of 
the previous test, a nominal steady state was achieved in about 800 time steps at the maximum 
Courant number C,,,= 100. The corresponding inlet Mach number was M ,  =0.7. At this 
stage the sup-norm I( R 11 , of the normalized residual decreased to U (lo-’). It was noted that for 
single-precision calculations the values of this norm oscillated boundedly in the range 
0 (10-’1< I( R 11, <U(10-6). This behaviour was localized on the second half of the aerofoil, 
whereas 11 R 11 z O ( l O - * )  elsewhere on the computational domain. 

Figures 22(b) and 23(a) are contour plots of axial momentum distribution in physical Cartesian 
space (x, y)  and in the stretched transverse nodal (x, q z )  space respectively. The latter presentation 
clearly shows that a local shock-induced massive separation occurs just past mid-chord and 
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Figure 22. TWS algorithm steady state solution, Navier-Stokes equations, laminar Re=4 x lo6: (a) M =65 x 45 element 
discretization; (b) physical space principal momentum contour distribution 

Figure 23. TWS algorithm steady state principal momentum solution, Navier-Stokes equations, laminar Re =4 x lo6: 
(a) transverse nodal space contour distribution; (b) perspective surface presentation 

extends to well beyond the trailing edge. This region, according to the computations, appeared 
marginally unsteady. Figure 23(b) graphs a perspective view of the axial momentum distribution, 
hence correlates with Figures 17 and 21. The solution appears virtually E N 0  and sufficiently 
resolves the essential flow features. Note that.the decrease of momentum to zero at the leading 
edge and along the aerofoil surface occurs smoothly, with the possible exception of a modest two- 
cell under- or overshoot preceding the stagnation point. Note also that the outlet variation of this 
variable is totally devoid of dispersive oscillations. This distribution remains virtually planar in 
the essentially inviscid flow region and then drastically decreases in the viscous layer in a 
monotone way. Therefore the validity of the outlet boundary condition choice for this case, as 
discussed at the end of Section 4.1, is evidently supported by the regularity of this result. 

The shock wave boundary layer interaction is vividly depicted in the region just past mid- 
chord. This consists of two recirculation zones, the second being wider than the first. This 
significant flow activity then subsides in a wavy pattern in the wake originating after the trailing 
edge. Figure 24(a) shows the associated persective distribution of static pressure, which appears 
E N 0  everywhere, particularly at the stagnation point. The main difference between these data 
and those in Figure 21 lies in the recirculation zone pressure variation. The latter is detailed in the 
close-up graph in Figure 24(b). Note that a virtual plateau exists in the primary recirculation 
zone; whereupon, the local shock triggers the pressure rise. Possibly the attendant boundary layer 
thickening in this region significantly alters the cross-sectional area distribution to the extent of 
producing a virtual converging channel for the outer inviscid subsonic flow, which therefore 
accelerates. This event seems compatible with a decrease in pressure following its rise across the 
shock. This low-pressure area is then terminated by a second shock and accompanying trailing 
edge recompression. This second pressure increase then causes the second separation, as 
illustrated in the momentum distribution in Figure 23(b). 
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Figure 24. TWS algorithm steady state pressure solution, perspective surface presentations, Navier-Stokes equations, 
laminar R e = 4  x lo6: (a) global distribution; (b) trailing edge region detail 

This numerical simulation has been the first practical transonic aerodynamics viscous problem 
computed with the derived TWS algorithm, and the results seem to conform with expected 
shock-boundary layer interaction phenomena. However, no experimental data are known for 
this challenging practical problem, hence independent solution validation is not attainable at  
present. 

10. CONCLUSIONS 

A stable and accurate finite element CFD algorithm for the laminar compressible Navier-Stokes 
and Euler conservation law systems is described and verified. It constitutes the union of a Taylor 
weak statement finite element semi-discretization, an optimal implicit Rosenbrock-Runge-Kutta 
integration algorithm and a matrix tensor product approximate factorization linear algebra 
procedure. The study is complemented by a full theoretical development of well-posed boundary 
conditions for all Reynolds and Mach numbers. These conditions constrain the surface deviatoric 
tractions and momentum and heat flux and are directly enforceable via the surface integrals 
exposed in weak statement constructions. 

The TWS algorithm plays a central role in the achievement of stable solutions by generating a 
suitably dissipative semi-discrete ODE system. The amount of stability correction is regulated by 
the parameters Bq, which were initially determined heuristically for the selected benchmark 
problems. Their values have been held uniformly constant and the regularity of the documented 
results supports their adequacy. A complementary theory has been initiatedz5 that leads to a 
rigorous and automatic determination of these dissipation parameters. Anyhow, the developed 
algorithm has uniformly maintained its robustness over a wide range of challenging inviscid and 
viscous flow problems, without problem-dependent ‘fine tuning’. These selections are independ- 
ent of mesh distribution, as especially revealed by the 2D inviscid flow results. 

Concerning the viscous tests, the results are stable as well as E N 0  and conform to the 
fundamental physics of the problems investigated. With this fundamental background, the 
authors are progressing in the assessment of the delicate interplay between artificial dissipation 
and physical diffusion via examination of a well-documented laminar boundary layer-shock 
wave interaction problem in a supersonic flow over a flat plate. The results will be reported in a 
forthcoming paper. 

In regards to time accuracy and swift convergence to steady state, the quasi-1D tests reveal that 
the IRK procedure yields uniformly more accurate and stable results than those generated by the 
equivalently second-order-accurate trapezoidal rule. This is probably due to a reduced IRK 
truncation error coefficient, as possibly promoted by the enforced stiff stability with respect to a 



440 G. S. IANNELLI AND A. J. BAKER 

non-linear model problem. Further, the 2D inviscid flow tests indicate that IRK affords the 
largest usable Courant number. Hence this implicit Rosen brock-Runge-Ku t ta algorithm consti- 
tutes an advantageous and economical alternative to the single-step procedures now in general 
use in CFD codes. 
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